CERTIFICATE OF ACCREDITATION # The ANSI National Accreditation Board Hereby attests that Link Engineering Company 401 Southfield Road Dearborn, MI 48120 Fulfills the requirements of ISO/IEC 17025:2017 In the fields of ## TESTING and CALIBRATION This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org. Jason Stine, Vice President Expiry Date: 21 October 2025 Certificate Number: ACT-1997 ANSI National Accreditation Board ### SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017 ## **Link Engineering Company** 401 Southfield Road Dearborn, MI 48120 **Daniel Williams** d.williams@linkeng.com ### **TESTING AND CALIBRATION** Valid to: October 21, 2025 Certificate Number: ACT-1997 ### **TESTING** #### Mechanical | Specific Tests and/or
Properties Measured | Specification, Standard,
Method, or Test Technique | Items, Materials or Product Tested | Key Equipment or
Technology | |--|--|--|--------------------------------| | Friction Effectiveness/
Performance/Wear | SAE J2522, SAE J2784,
SAE J2684, ISO 26867,
JASO C406, JASO C407,
ATPD-5324-A, ECE R90-02,
SAE 2690, ECE R13,
ECE R13H, ISO 11157, ECE
R139(BAS) | Friction Materials and Components for Hydraulic Brakes | Performance Dynamometer | | Noise | SAE J2521, AK Noise, SAE
J2636,
SAE J294, ATPD-5324-A,
USCT, AK Noise | Friction Materials and
Components for Hydraulic
Brakes | NVH Dynamometer | | Wear | JASO C427, SAE J2707,
SAE J3006, ATPD-5324-A,
USCT | Friction Materials and
Components for Hydraulic
Brakes | Performance Dynamometer | | Structural Performance | JASO C441, JASO C448,
SAE J1713, SAE J2928,
ECE R90-2, SAE J1404,
ATPD-5324-A | Friction Materials and
Components for Hydraulic
Brakes | Performance Dynamometer | Version 018 Issued: December 21, 2023 | Specific Tests and/or
Properties Measured | Specification, Standard,
Method, or Test Technique | Items, Materials or
Product Tested | Key Equipment or
Technology | |--|---|--|--| | Friction Effectiveness/ Performance/Wear/ Structural | RP 628, TP-121D, SAE
J2115, JASO C407,
ISO 26865,
ISO 26866, ATPD-5324-A | Friction Materials and
Components for Air Brakes | Commercial Vehicle Dynamometer | | Brake Emissions | CARB 17RD016,
WLTP Wear.2018.07.020 | Friction Materials and
Components for Hydraulic
and Air Brakes | Brake Dynamometer with Isokinetic Sampling Tunnel, Multi-stage Low Pressure Impactor, Quartz Crystal Microbalance, Condensation, Particle Counter, Aerodynamic Particle Counter, Electrodynamic Particle Sizer, and PM2.5 & PM10 Gravimetric Sampler | | Performance | JIS D 260 <mark>3, SAE 1603</mark> | Hydraulic Brake Systems | Hydraulic Brake
Bench Test | | Impact | SAE J175, SAE J2530, SAE
J3010, ISO 7141,
ABNT NBR 6752 | Hub-Bearing Assemblies and
Wheels | Drop Tester | | Cornering Fatigue | SAE J328, SAE J1095, SAE
J2530, ISO 3006, ISO 3894,
ABNT NBR 6750,
ABNT NBR 6752 | Hub-Bearing Assemblies and Wheels | Cornering Fatigue Test | | Radial Fatigue | SAE J328, SAE J2530, SAE
J3010, ISO3006, ISO 3894,
ABNT NBR 6750, ABNT
NBR 6752 | Hub-Bearing Assemblies and
Wheels | Radial Fatigue Test | | Biaxial Fatigue | SAE J2562 | Hub-Bearing Assemblies and
Wheels | Biaxial Test | | Performance and Durability | SAE J1153 | Master Cylinder Assemblies | Caliper Bench/
Dynamometer | | Performance | SAE J101 | Hydraulic Wheel Cylinders for Automotive Drum Brakes | Caliper Bench/ Dynamometer | Version 018 Issued: December 21, 2023 | Specific Tests and/or
Properties Measured | Specification, Standard,
Method, or Test Technique | Items, Materials or
Product Tested | Key Equipment or
Technology | |--|--|--|---| | Performance | SAE J2316 | Wheel Nut Seat System | Mechanical Test | | Friction Coefficient and Wear | SAE J661, VESC-V3,
NTC 5388 | Friction and Composite Materials | Chase Test System | | Compressibility | SAE J2468, ISO 6310,
JIS D4413, SAE J3907-2
ABNT NBR 9301,
ECE R90-02, GMW 15334,
NTC 2406, NTC 5390 | Friction and Composite
Materials | Compressibility, Oven
Test System | | Flexural Modulus | ASTM D790 | Plastics, Friction and Composite Materials | Tensile Machine | | Swell and Growth | SAE J160, ABNT NBR 5505,
ISO 6310 | Friction and Composite Materials | Compressibility, Oven
Test System | | Internal Shear,
Shear Strength | ISO 631 <mark>1, ISO 6312,</mark>
ABNT NBR 5537,
NTC 5292, SAE J840,
ECE R90-02, NTC 2405 | Friction and Composite
Materials | Shear Test Stand | | Specific Gravity/
Density/Porosity | SAE J380, ISO 15484 | Friction and Composite Materials | Balance | | Hardness | ISO 2039, ASTM E18, ISO 6508-1, SAE J2654 | Rockwell Hardness of
Metallic, Friction and
Composite Materials | Rockwell Tester,
Compressibility Stand | | Hardness | ASTM E10, ISO 6506-1 | Brinell Hardness of Metallic and Composite Materials | Compressibility Stand,
Brinell Microscope | | Hardness | SAE J379 | Gogan Hardness of Friction
Materials | Compressibility Stand | | Servo-Hydraulic | 7.4-L3-1652 LINK Durability Cycling Test Procedure 7.4-L3-1656 LINK Static Loading Procedure Customer Specifications | Strength and Durability of
End-Products of Non-
Standard Size and Shape for
Transportation, Automotive,
Marine, Military, Medical and
Power Sports Products | Linear Hydraulic Actuators
(Displacement up to 10 inch,
Force up to 55,000 lbs),
Rotary Hydraulic Actuators
(Torque up to 100,000
inch·lbs, Angle up to 90°) | | Specific Tests and/or
Properties Measured | Specification, Standard,
Method, or Test Technique | Items, Materials or
Product Tested | Key Equipment or
Technology | |--|--|--|---| | Full Brake System | ECE-R13, ECE-R13H,
ECE-R78, ECE R90, ECE
R139(BAS),
FMVSS 105, FMVSS 122,
FMVSS 135 | Friction Materials/
Brake Hardware/
Full Vehicle | Vehicle, In-Vehicle Data
Acquisition System,
Proving Grounds
Field Testing | | Performance | Thermal Capacity, High Speed Fade, AMS Fade Test, Vacuum Boosted, Trailer Tow, Death Valley, Link Brake Balance, New Car Assessment Program, Customer Specified Variations of the Above Listed Tests | Friction Materials/
Brake Hardware/
Full Vehicle | Vehicle, In-Vehicle Data
Acquisition System,
Proving Grounds
Field Testing | | Durability | Detroit City Traffic, Phoenix
City Traffic, Detroit Suburban
Traffic, Phoenix Suburban
Traffic, Huron Detroit
Metropolitan Traffic,
Customer Specification
7.2-L2-495 | Friction Materials/
Brake Hardware/
Full Vehicle | Vehicle, In-Vehicle Data
Acquisition System,
Proving Grounds
Field Testing | | Brake Wear | Los Angeles City Traffic, Detroit City Traffic, Phoenix City Traffic, Detroit Suburban Traffic, Phoenix Suburban Traffic, Huron Detroit Metropolitan Traffic, Customer Specification 7.2-L2-495 | Friction Materials/
Brake Hardware/
Full Vehicle | Vehicle, In-Vehicle Data
Acquisition System,
Proving Grounds
Field Testing | | Noise | Los Angeles City Traffic, Phoenix City Suburban Traffic, Marquette City Traffic, Customer Specification 7.2-L2-495 | Friction Materials/
Brake Hardware/
Full Vehicle | Vehicle, In-Vehicle Data
Acquisition System,
Proving Grounds
Field Testing | | Specific Tests and/or
Properties Measured | Specification, Standard,
Method, or Test Technique | Items, Materials or
Product Tested | Key Equipment or
Technology | |--|--|--|---| | Thermal Failure | Death Valley/Fluid Boil | Friction Materials/
Brake Hardware/
Full Vehicle | Vehicle, In-Vehicle Data
Acquisition System,
Proving Grounds
Field Testing | | Customer Specification | Stopping Distance, Brake Line Pressure, Pedal Force, Pedal Travel, Deceleration, Brake Pad Temperature, Rotor Temperature, Customer Specified Variations of the Above Listed Tests | Friction Materials/
Brake Hardware/
Full Vehicle | Vehicle, In-Vehicle Data
Acquisition System,
Proving Grounds
Field Testing | | Fuel Economy,
Coast-down, Fuel
Consumption | SAE J132 <mark>1, SAE J2263</mark> | Full Vehicle | Vehicle, In-Vehicle Data
Acquisition System,
Proving Grounds
Field Testing | | NVH Vehicle Testing,
Interior/Exterior Noise
Studies, Pass by Noise | SAE J986 | Full Vehicle | Vehicle, In-Vehicle Data
Acquisition System,
Proving Grounds
Field Testing | | Thermal HVAC, Cooling
Systems, Cold Chamber,
Performance, Durability | Customer Specification | Full Vehicle | Vehicle, In-Vehicle Data
Acquisition System,
Proving Grounds
Field Testing | | Wheel and Tire, Tire Blowout, Structural Integrity | FMVSS 110 | Full Vehicle | Vehicle, In-Vehicle Data
Acquisition System,
Proving Grounds
Field Testing | | Stability Control System | FMVSS 126, ECE R140 | Full Vehicle | Vehicle, In-Vehicle Data
Acquisition System,
Proving Grounds
Field Testing | #### Chemical | Specific Tests and/or
Properties Measured | Specification, Standard,
Method, or Test Technique | Items, Materials or
Product Tested | Key Equipment or
Technology | |--|---|---|---| | Composition | SAE J2975:2011, 2013, SAE
J2975:2015, EPA 3051A,
6010C, 3060A,7196A,
EPA/600/R-93/116
ASTM E3061, ASTM D5702 | Friction and raw materials, metal alloys, composites materials, paints and coatings | ICP-AES, Microwave,
PLM Microscope,
UV-Vis Spectrometer | | Corrosion | ASTM B117, ISO 9227,
MIL-STD-810G Method
509.5, ASTM G85 Annex 1, 2
and 3, ABNT NBR 8094,
ASTM D1735
Customer Specifications | Fog (spray) corrosion of metallic and non-metallic materials and composites | Cyclic Corrosion Chamber,
Temperature and Humidity
Cycling Chambers | | Corrosion | GMW14872, SAE J2334,
Customer Specifications | Cyclic Corrosion of Metallic and non-metallic materials and composites | Cyclic Corrosion Chamber,
Temperature and Humidity
Cycling Chambers | | Corrosion | ASTM B368, ISO 9227,
DIN 50021,
Customer Specifications | Accelerated Corrosion: CASS and AASS of Metallic and non-metallic materials and composites | Cyclic Corrosion Chamber,
Temperature and Humidity
Cycling Chambers | | Corrosion | ISO 6314, ASTM D870,
ISO 2812-2,
Customer Specifications | Resistance to Reagents and Immersion | Visual Inspection with Camera | | Corrosion | ISO 2409, ASTM D3359,
ABNT NBR 11003, ASTM
D610, ASTM D1654 | Paint/Coat degree of rusting,
migration and adhesion by
crosscut, creep-back and tape
adhesion | Scribe Tool, Tape | ## **CALIBRATION** ### **Electrical – DC/Low Frequency** | Parameter / Equipment | Range | Expanded Uncertainty of Measurement (+/-) | Reference Standard,
Method and/or Equipment | |---|------------------------------|---|--| | DC Volt Sensors and
Transducers ² | (0 to ±10) V
(0 to ±60) V | 0.001 V
0.03 V | 7.4-L2-1130 DC Voltage
Calibration | | Electrical Simulation:
Temperature Sensor and
Transducer Systems ² | (-40 to 2 400) °F | 0.7 °F | 7.4-L2-1126 Temperature Hardware Calibration 7.4-L2-1147 Temperature Software Calibration 7.4-L2-1108 Temperature Linearizer Calibration | #### **Mass and Mass Related** | Parameter/Equipment | Range | Expanded Uncertainty of Measurement (+/-) 4,5,6 | Reference Standard,
Method, and/or Equipment | |--|--|--|---| | Pressure Sensors | (345 to 27 407) kPa | (0.15 + 0.000 6 <i>P</i>) kPa | 6.4-L2-208 Calibration of Pressure Transducers using Ashcroft Dead Weight Tester | | Pressure Sensor and
Transducer Systems ² | Up to -15 psiv
Up to 200 psig
Up to 3 000 psig
Up to 5 000 psig
Up to 7 500 psig | 0.03 psiv
0.3 psi
4 psi
8 psi
12 psi | 7.4-L2-1124 Pressure Hardware Calibration 7.4-L2-1145 Pressure Software Calibration | | Force Sensors | (89 to 2 224) N | (1.93 + 0.001 3F) N | 6.4-L2-211
Calibration of Pedal Force
Transducers Using Squash
Rig | | Parameter / Equipment | Range | Expanded Uncertainty of Measurement (+/-) | Reference Standard,
Method and/or Equipment | |--|---|--|---| | Force Sensor and Transducer
Systems ² | Up to 500 lbf (weights) | 0.6 lbf
0.8 lbf
1.6 lbf
5 lbf
60 lbf
84 lbf | 7.4-L2-1129 Force Calibration 7.4-L2-1149 Force Software Calibration | | Decelerometers-Angle
Measurement | (-1 to 1) g | (0.000 8 + 0.003 1A) g | 6.4-L2-226 DTC Calibration of Decelerometers | | Torque Sensor and
Transducer Systems ² | Up to 1 000 lbf·in Up to 5 000 lbf·ft Up to 25 000 lbf·ft Up to 75 000 lbf·ft | 0.6 lbf·in
8 lbf·ft
30 lbf·ft
180 lbf·ft | 7.4-L2-1123 Torque Hardware Calibration 7.4-L2-1144 Torque Software Calibration 7.4-L2-1151 HBM Torque Calibration - Verification | | Liquid Volume Sensor ² | Up to 25 ml | 0.1 ml | 7.4-L2-1127
Volume Calibration | | Air Velocity Sensor and
Transducer Systems ² | (500 to 3 500) fpm | 50 fpm | 7.4-L2-1131
Air Velocity Calibration | ### **Length – Dimensional Metrology** | Parameter/Equipment | Range | Expanded Uncertainty of Measurement (+/-) ³ | Reference Standard, Method, and/or Equipment | |--|--|--|---| | Angle ² | Up to 180 $^{\circ}$ Up to 7 $^{\circ}$ | 0.3 °
0.02 ° | 7.4-L2-1143
Angle Calibration | | Non-Contact Displacement Probes | (0.125 to 25.4) mm | 0.002 mm | 6.4-L2-227
Calibration of Non-Contact Probes | | Distance Sensor and Transducer
Systems ² | Up to 1 in Up to 2 in Up to 6 in Up to 24 in | 0.000 06 in
0.000 2 in
0.001 in
0.003 in | 7.4-L2-1136 Capacitec Measurement System Calibration 7.4-L2-1148 Length Software Calibration 7.4-L2-1128 Length Calibration | | Distance Sensors | (0.254 to 508) mm | $(0.06 + 0.003 \ 3L) \text{ mm}$ | 6.4-L2-92
Calibration of String
Potentiometers | ### **Time and Frequency** | Parameter / Equipment | Range | Expanded Uncertainty of Measurement (+/-) | Reference Standard,
Method and/or Equipment | |----------------------------------|------------------|---|---| | Rotational Speed Sensors and | Up to 50 rpm | 0.1 rpm | 7.4-L2-1125 Rotational Speed Calibration and 7.4-L2-1146 Rotational Speed Digital Calibration | | Transducers Systems ² | Up to 20 000 rpm | 3 rpm | | ### Thermodynamic | Parameter / Equipment | Range | Expanded Uncertainty of
Measurement (+/-) | Reference Standard,
Method and/or Equipment | |---|-----------------|--|--| | Relative Humidity Sensor and
Transducer Systems ² | (10 to 95) % RH | 5 % RH | 7.4-L2-1132
Humidity Calibration | #### Notes: - 1. Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%. - 2. On-site service is available for calibration parameters, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope. - 3. The term *L* represents Length in units appropriate to the uncertainty statement. - 4. The term A represents Acceleration\Deceleration in units appropriate to the uncertainty statement. - 5. The term *F* represents Force in units appropriate to the uncertainty statement. - 6. The term *P* represents Pressure in units appropriate to the uncertainty statement. - 7. This scope is part of and must be included with the Certificate of Accreditation No. ACT-1997. Jason Stine, Vice President Version 018 Issued: December 21, 2023